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Abstract 

 

We suggest a strong potential of algae to mitigate ammonia gas from animal house and to be 

used as a high-value animal feed. Ammonia gas emission from animal manure 

decomposition is a major concern in animal housing operations. Excessive ammonia gas 

volatilization will affect both animal and worker health and can also cause significant 

environmental concerns. Current ammonia gas mitigation methods are based on physical, 

chemical, biological, and dietary treatments, but the costs are high and the performances are 

not stable. In this project, we proposed an algae-based method for removing ammonia gas 

generated from animal housing operations while producing a biomass with high protein 

content which can be potentially used as high-value animal feed products. The green algae 

Scenedesmus dimorphus was used for evaluating its ability to mitigate ammonia gas in a gas-

lift photobioreactor under continuous operational mode. Different conditions were tested for 

optimal algal biomass productivity: 0.05, 0.1, 0.2, and 0.3 day
-1

 of dilution rate; 17, 42, 60, 

and 72 ppm of ammonia gas concentration in inlet air; and pH 5, 6, 7, and 8. The nitrogen 

mass balance was calculated for each case and results showed that as high as 98.6 % of 

nitrogen was assimilated by algae biomass at optimal condition (60ppm, pH 7, and 0.1 day
-1

 

of dilution rate). The amino acid profile of the biomass was also analyzed in application of 

algae as a source of animal feed. This experiment implies two benefits. One is economic 

benefit, i.e., cost down ammonia gas removal and algae growth, the other is a new algae 

market: animal feed.  
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Chapter 1. Introduction 

 

1.1. Project description 

 

With an awareness of seriousness of ammonia gas emission from animal house, this project 

was designed to explore the possibility of algal photobioreactor to abate ammonia gas and 

understand how the ammonia gas is removed inside the reactor. In order to maximize the 

algae biomass production and the amount of ammonia gas reduction, the optimal growth 

condition was investigated. The ammonia gas removal performance was compared between 

the growth conditions and with the previous research: mitigating ammonium using algae, as 

covered broadly in Chapter 4; and mitigating ammonia gas using other methods, as 

introduced in section 2.4 in Chapter 2. The nitrogen mass balance was assessed to see the 

ammonia gas fate. As the limiting nutrient in this project was nitrogen, the amino acid profile 

was assessed as a potential source of an animal feed.  

 

1.2. Thesis organization 

 

In Chapter 2, literature was reviewed to raise awareness of the severity of ammonia gas from 

animal house, to present principles of ammonia gas generation and ventilation, and to 

introduce ongoing mitigation methods. In Chapter 3, materials and methods of present study 

were introduced to show how the algae cells were cultured, how the photobioreactor was 

built and operated, and how the analyses have conducted. In Chapter 4, the data from each 

algae growth condition (dilution rate, ammonia concentration in the inlet gas, and medium 

pH) were compared in terms of cell density, cell productivity, ammonia gas removal 

performance parameters, and nitrogen mass balance. The amino acid profile of algae grown 

at the optimal condition was also characterized. In Chapter 5, general conclusion was arrived 

and future work was suggested.  
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Chapter 2. Background of ammonia gas generation and emission from 

animal house and mitigation methods 

 

2.1. Impact of ammonia gas on the environment 

 

Ammonia (NH3) is a corrosive, colorless gas with a very distinct odor. In the United States, 

the largest ammonia emission source is livestock operations for production of milk, meat, 

and eggs [1]. Ammonia gas volatilization from animal houses not only impairs the manure 

value as fertilizer due to N loss, but also causes considerable environmental and health 

concerns. Various studies have shown that high ammonia concentration can cause the 

following negative consequences:  

(1) Diseases 

The high ammonia concentration inside the animal house will affect the health of animals as 

well as workers. Several review papers have been published related to the health problems 

caused by elevated ammonia concentration from animal house including respiratory and 

retinal diseases, reduced respiratory rate, degrade of egg quality, and retarded animal growth 

([2],[3]). 

(2) Eutrophication of surface water bodies 

Eutrophication occurs when there is excessive amount of nitrogen in the water or soil 

because nitrogen is one of the limiting factors for algal growth. The overabundance of algae 

will cloud the water and eventually unbalance the ecosystems. 

(3) Soil and water contamination by acidification and leaching  

Ammonia reacts with acidic atmospheric species, such as nitrate (NO3
-
) and sulphate (SO4

2-
) 

to form aerosols and is redistributed to land and water [4]. After leaching by rainwater 

ammonium sulfate reaches to the soil or water and the ammonia is nitrified to nitric acid 

(HNO3) and acidification occurs [5].  

 

 NH            HN   H      H      ················ Equation 2.1 
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The N uptake by plants is rather low so the leached out ammonia-N disturb the mineral 

balance of the soil and contaminate groundwater and drinking water [6].  

(4) Noxious effect on vegetation or ecosystem 

Ammonia can also be directly absorbed by vegetation surface [5]. The introduction of 

nitrogen surplus to ecosystems might disturb the ecosystem and change biodiversity. The 

possible adverse effects of ammonia on plants such as foliar injury, growth and productivity 

alterations, and change in responses to insect pests and pathogens may reshape the 

biodiversity of the entire ecosystem [7]. 

(5) Adverse climate effect  

Ammonia gas itself is not a greenhouse gas, but it participates in nitrous oxide (N2O) 

generation during oxidization to nitrite [8]. Also, ammonia gas reduces air quality by the 

formation of particulate matter of diameter 2.5 or less. 

 

2.2. Animal house operations 

 

Prior to World War II, the majority of animals were reared in backyard flocks with natural 

ventilation. With dramatic expansion of animal research and meat industry, modern livestock 

production occurs primarily in confined buildings in order to protect the animals welfare 

from outside environment and to increase productivity [9]. While the configurations of 

animal housing systems vary widely, the animal manure management practices are either 

through land application or storage inside a pit underneath a floor. Typically, land application 

of animal manure emits more ammonia but occurs during short period of time and the 

management is adjustable to minimize ammonia volatilization. On the other hand, manure 

stored in a pit is accumulated continuously and removed less frequently, creating a favorable 

environment for degradation of organic nitrogen in the manure into ammonia. To reduce 

ammonia emission, this manure management practice is gaining more research attention [10].  
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Here the term ‘manure’ contains various forms: feces or slurry in the pit and the mixture of 

animal wastes on the floor. The animal wastes mixture includes urine (contains urea for 

mammals, uric acid for birds), feces (contains urea or uric acid, ammonia, and undigested 

protein), bedding materials (straw, sunflower hulls, wood shaving), washed water, and dust. 

Those highly organic materials are a good nutrient source for urease-producing bacteria that 

are abundant on a floor of animal houses [9]. Urea and uric acid hydrolyzes rapidly to form 

ammonia which will emit soon after excretion, often within a few days. The formation of 

ammonia from complex organic nitrogen in feces occurs slowly within months or years, but 

will continue with the microbial breakdown of manure [1]. 

 

2.3. Mechanisms of ammonia gas production and emission  

 

Ammonia gas formation and volatilization from animal houses depends on several factors 

related to animals (e.g. diet and animal activity), animal wastes (e.g. moisture content, pH, 

temperature, and surface area), environment (e.g. indoor and outdoor temperature, ventilation 

flow, and air velocity over the manure surface), and other site-specific factors (e.g. type of 

bedding materials) [11].  

 

When animals are fed high protein feed, the surplus nitrogen is not metabolized and excreted 

mostly via the urine. A small amount of urea enters the large intestine from the blood and 

becomes incorporated into bacterial protein that then is excreted via the feces. Undigested 

and thus unabsorbed amino acids are excreted into the feces. The biochemical processes of 

urea or uric acid degradation into ammonia can be simplified as follows [12, 13]: 

 

 rea     NH      H  
 rease
→    NH 

  H   
-
  H-   ················ Equation 2.2 

 ric acid    H   N    .     H  
 ricase
→      

 rease
→         NH                 Equation 2.3 

 



www.manaraa.com

5 
 

The urease and uricase are bacteria originated enzyme and their activities are affected by 

temperature, pH and water activity. Urease activity shows exponential increase relative to 

temperature from 10  up to 60  and has optimum pH ranging from 6 to 9. Uricase has 

optimum temperature of 45  and stable pH range from 5.5 to 10.0 [14]. The animal manure 

natural pH is usually between 6.8 and 7.4, therefore the optimal conditions for hydrolysis are 

generally met in animal housing system [12].  Figures 2.1 and 2.2 show the relative effects of 

temperature and pH, respectively on degradation rate. 

 

Figure 2. 1 Effect of temperature on the uric acid degradation (adapted from [13]) 



www.manaraa.com

6 
 

 

Figure 2. 2 Effect of pH on the uric acid degradation (adapted from [13]) 

Figure 2.3 shows the litter moisture content effect on ammonia release. It shows that 

microbial growth is optimal between 40% and 60% moisture content. In practice, the 

moisture in the animal litter ranges from 20 and 40%, thus, an increase in the moisture 

enhances ammonia formation [13]. 

 

Figure 2. 3 Ammonia release rate dependence on litter moisture content (adapted from [13]) 

 



www.manaraa.com

7 
 

After ammonia formation, two equilibriums determine the ammonia dissociation, namely: 

ammonium-ammonia equilibrium (Equation 2.4) and ammonia liquid-gas phase equilibrium 

(Equation 2. 5). In liquid phase, total NH3-N is in a state of equilibrium between ionized 

ammonium (NH4
+
) and un-ionized ammonia (NH3) [12]. 

 

   
                   

[   ][   
 ]

[   
 ]

                ················ Equation 2.4. 

 

Figure 2.4 is derived from Equation 2.4 and it shows the nitrogen species change along with 

different pH. The dominant N species exist as NH4
+
 at low pH and NH3 at high pH. The two 

species exist at the same amount when pka is equals to pH. The equilibrium is also affected 

by temperature. For example, higher temperature results in lower pka, so the equilibrium 

favors ammonia at a higher temperature. 

 

 

Figure 2. 4 log C-pH diagram for ammonia (adapted from [15]) 

 

The ammonia liquid-gas phase equilibrium can be expressed by following: 

 

NH  l  NH   g  ················ Equation 2.5. 

 

The above balance follows Henry’s law, so high partial pressure of ammonia in liquid phase 

results in more ammonia gas concentration. Because the partial pressure increases with the 

temperature raise, the higher temperature leads to more ammonia gas. 
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After ammonia gas dissociated from ammonia in liquid phase, the ammonia volatilization to 

the air follows the mass flux, expressed in Equation 2.6 [13]. 

 

                          ················ Equation 2.6. 

 

The volatilization rate is the product of the difference in partial pressure between the two 

media (driving force) and a mass transfer coefficient. The partial pressure increase with 

higher temperature; and the mass transfer coefficients rise with increasing air velocity at the 

boundary layer and emitting surface area [12]. 

 

2.4. Current NH3 removal methods  

 

The current practices of curbing ammonia emission can be classified as mitigation at 

ammonia generation phases (i.e., the phase of feces production, degradation, volatilization, 

ventilation) or end-of-pipe treatment [13, 16].  

 

The abatement methods are categorized by the characteristics of the technologies although 

some technologies overlap more than one category.  

 

(1) Dietary methods  

By adjusting animal diet or feed conversion ability, the nitrogen excretion in feces can be 

decreased or the urinary pH can be reduced. Numerous research data have proven these 

effects [12, 17]. However, this is limited by high cost of implementation and N-excretion is 

not totally prevented by this method [12, 13]. 

 

(2) Physical methods  

Housing and manure management systems can be designed to prevent ammonia 

volatilization. Frequent litter changing [18], frequent removal of manure from building (belt 

houses), and urine-feces separation (floor system) will reduce urine contact with feces and 
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increase dry matter in manure so that the bacterial activity is inhibited and the degradation 

rate is minimized. Also, animal house can be designed to control the mass flux, such as 

reducing surface area of manure exposed to air (battery houses), and reducing air velocity 

(closed manure storage systems) [13]. It should be noted that, however, reducing ammonia 

emission using housing and manure management system alone is not an ideal method and 

sometimes has concerns of animals welfare, economics and technical implementation. 

 

Ammonia adsorption to substances (e.g. zeolite, peat moss, and commercial products) that 

have high affinity for binding to NH4
+
 ions is another physical method. Those substances are 

usually more effective on slurries than dry feces [17]. Although significant reductions have 

been achieved using zeolite and sphagnum peat moss, large quantities of these additives are 

required so it may increase the amount of manure [13]. 

 

(3) Chemical methods  

Lowering pH will reduce the enzyme activity and make NH3-N to exist as ionized form 

(NH4
+
). This can be achieved by adding acids or acidifying additives (e.g. alum, ferric 

chloride, and calcium chloride) to the manure. However, there are several limitations of the 

chemical methods. First, due to heterogeneous nature of the manure, the acid is not always 

mixed well with the manure. As a consequence, an acid layer will be formed on top of the 

manure and cause corrosion to the facility. Also, it cannot prevent the dissociation of the 

ammonia gas from ammonium completely. Second, increased moisture content due to the 

addition of acid solutions will reduce its feasibility. As shown in Figure 2.3, ammonia 

formation increases with the increment of moisture content when moisture content is lower 

than 40 %. Finally, adding acid solution to manure cause undesirable environmental concerns 

[13]. In addition to the above methods, adding urease inhibitor to manure is another way to 

reduce ammonia formation. By inhibiting urease activity, the hydrolysis described in 

Equations 2.2 and 2.3 can be blocked or delayed so the ammonia emission can be reduced. 

Several researchers have tried different urease inhibitors in lab scale and showed significant 

reduction of urea hydrolysis [17]. However, in case of full scale animal house application, 

large amount of additives might bring unknown side effects on the crops or pastures [17]. 
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Acid scrubber is another type of chemical method and can result in an ammonia removal rate 

ranging from 91 to 99% [16]. The pH in the acid scrubber is usually controlled below 4 by 

adding acid to the water droplet. A schematic diagram example of an acid scrubber is shown 

in Figure 2.5. 

 

Figure 2. 5 Schematic diagram of acid scrubber for ammonia removal (adapted from [19]) 

 

Despite its high performance, the high cost of installation and maintenance of acid scrubber 

limits its practical applications. It also generates wastewater to prevent unwanted 

precipitation of ammonium salt in the system [16]. Moreover, only mechanically ventilated 

houses can use this device and it does not reduce ammonia concentrations inside the house 

[13].  
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(4) Biological methods 

After ammonia gas volatilized, the ammonia concentration in the outgoing air can be reduced 

using nitrifying bacterial biofilter or algal nitrogen assimilation.  

 

Among the biological ammonia treatment endeavors, using biofilter has been reported to be 

an effective method (from 35 to >90% of ammonia removal, [16]). Figure 2.6 shows the 

schematic design of biofilter. In a biofilter, nitrifying bacteria is inoculated into the packing 

media while the treated fluid flows through it. Although it is one of the efficient ammonia 

mitigation tools, the appropriate packing material has not yet been clearly determined and the 

highest tolerant ammonia concentration to bacteria is relatively low (35 ppm) [20].  

 

 

Figure 2. 6 Biofilter system for ammonia removal (adapted from[12]): (a) exhaust fan, (b) air 

duct, (c) humidifier, (d) splinker zone, (e) packing media, (f) air outlet, (g) pump 

 

Another biological treatment method is to use microalgae as an ammonia scrubber. So far 

this method has been mainly focused on the dissolved ammonium in a liquid phase in 

wastewater treatment. This paper is the first report to mitigate ammonia in gas phase using 

algae.  

2.5. Ammonia removal using microalgae 
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Algae culture system can be used as one of the ‘end-of-pipe’ methods for treatment of 

ammonia from animal house. This is beneficial in terms of both economics and environment. 

Because algae need nitrogen for syntheses of nitrogen-content molecules such as proteins and 

nucleic acids for their growth, providing waste ammonia gas from animal house reduce the 

costs of the algae cultivation and the produced algae biomass can be further used as an 

animal feed with high-value proteins [21]. Unlike chemical methods such as strong acids, the 

algal-ammonia mitigation causes no potential damage to the environment.  

 

Although ammonia in gas phase is remained unexplored, using microalgae for treating 

ammonia in liquid phase, particularly in wastewater has been intensively investigated. For 

example, the ammonia effect on Scenedesmus spp. has been studied by several researchers 

([22-26]) using ammonia in liquid phase and it is well known that the inhibitory effect of 

ammonia depends on its concentration and the medium pH. The dilution rate effect on the 

Scenedesmus spp. growth when it is used for ammonia removal is also one of the interesting 

topics because the cell productivity, nutrition competition among different organisms are 

affected by dilution rate [27]. 

 

The biochemical composition of algae is affected by its growth condition, especially the 

amount of nutrient provided to the algae. For example, more protein will be expressed under 

higher nitrogen concentration while more lipid or carbohydrate, which is lack of nitrogen, is 

produced under nitrogen-limiting environment. 

 

The purpose of this study is to examine the Scenedesmus dimorphus cell growth and cell 

productivity in the presence of ammonia gas at different conditions. The fate of nitrogen 

from ammonia gas and the ammonia gas removal performances were also evaluated. In order 

to see the potential as an animal feed, the algae biomass was characterized and compared 

with other cases. This paper will help animal house operators to develop a new ammonia gas 

trap system and animal feeding system.  
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Chapter 3. Materials and methods 

 

3.1. Algae strain and medium 

 

The freshwater green algae Scenedesmus dimorphus (UTEX 1237) was used. The alga was 

obtained from the culture collection at University of Texas at Austin and was maintained in 

agar slant at 5-10  . To prepare seed culture, the cells on agar slant were transferred to 250-

mL Erlenmeyer flasks containing 50-mL sterilized modified Bold’s Basal Medium  [28, 29]). 

The modified BBM contains the following chemicals: KH2PO4 (175 mg/L), CaCl2·2H2O (25 

mg/L), MgSO4·7H2O (75 mg/L), NaNO3 (250 mg/L), K2HPO4 (75 mg/L), NaCl (25 mg/L), 

EDTA (50 mg/L), KOH (31 mg/L), FeSO4·7H2O (4.98 mg/L), H2SO4 (1uL), H3BO3 (11.42 

mg/L), MoO3 (1.42 mg/L), and trace metal solution (1ml/L): ZnSO4·7H2O (8.82 g/L), 

MnCl2·4H2O (1.44 g/L), CuSO4·5H2O (1.57 g/L), Co(NO3)2·6H2O (0.49 g/L). The pH of the 

medium was adjusted to 6.8 prior to autoclave at 121  for 15 minutes. The flasks were 

placed in an orbital shaker set at 200 rpm under 25  under continuous illumination at 110-

120 µmol s
-1

 m
-2

. The cultures were incubated for 10 days and then transferred to a 5-L 

(working volume) flat panel photobioreactor to investigate the algal adsorption of the 

ammonia gas.  

 

3.2. Photobioreactor setup 

 

A flat panel photobioreactor was used in this work. The reactor was made of plexiglass with 

a dimension of 8.5×9.5×62 cm (L×W×H) and working volume of 5 L (Figure 3.1).  
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Figure 3. 1 Schematics of the photobioreactor systems for algal culture using ammonia gas 

as nitrogen source 

 

As shown in Figure 3.1, a gas stream containing compressed air and ammonia gas was 

introduced to the reactor through a gas diffuser (bubble stone) located at the bottom of the 

reactor to provide mixing of the liquid. The ammonia gas and air flow rate were respectively 

regulated by a digital flow meter (MCS series for ammonia gas; MC series for the air, Alicat 

Scientific, Tucson, AZ) at a pre-set level to achieve the desired ammonia concentration with 

a total flow rate of 2.774 L/min. The ammonia gas in the inlet gas was ranged from 17-72 

ppm to simulate the ammonia gas concentration typically observed in a modern ventilated 

animal house operation. Before the mixing point of the air and ammonia gas, stainless steel 

tubing was used to avoid the condensation of the ammonia gas on the tube wall and tubing 

corrosion, and after the mixing point to the reactor, the mixed gas was connected through 

Norprene® tubing (4.8mm inner diameter, Cole-Parmer EW-06402-25, Chicago, IL). All the 
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gas tank and reactor were placed in a lab hood for the safety purpose. The reactor was also 

equipped with a pH control loop. A pH controller was connected with peristaltic pump 

(Chemcadet, Cole-Parmer Instrument) to maintain a pre-set pH by adding either hydrochloric 

acid or sodium hydroxide. In order to avoid pH overshooting or discernible volume change, 

0.25M HCl or 0.5M NaOH was used for shifting the operational pH level, while 0.1M HCl or 

0.05M NaOH was used for maintaining the pH at a certain level during the operation. 

 

3.3. Photobioreactor operations 

3.3.1. Continuous culture 

 

The photobioreactor was run at a batch mode initially for four days then switch to a 

continuous operation by withdrawing cell suspension from the reactor and feeding the same 

volume of fresh medium on a daily basis. A medium containing full composition of modified 

Bold’s Basal Medium  BBM  was used in the initial batch cultures. From day 12, NaNO3 in 

the BBM was replaced with NH4Cl until day 24 when the cell density reach to a relatively 

dense level (1.5 g/L). During this first 24 days of operation, no ammonia gas was injected 

into the reactor. At day 24, ammonia gas was introduced into the reactor at different levels 

based on the experimental design. At the same time, the nitrogen source in the feed medium 

(NH4Cl) was eliminated so the ammonia gas was the only nitrogen source provide to the 

algal cells in the reactor. Three parameters were studied during the remaining continuous 

operation: dilution rates, ammonia concentrations in the inlet gas, and medium pH levels.  

 

Samples were taken from the reactor on a daily basis for measuring the cell density. The 

steady-state under each operation condition was considered to have been established after at 

least two volume changes (the total volume of liquid flowing through the reactor), with a 

variation of cell dry weight less than 5% for at least four consecutive days. At the steady state, 

the withdrawn cell suspension was further centrifuged to collect both the supernatant and cell 

pellets for future analyses.  
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3.3.2. Growth conditions  

 

In order to test the effect of ammonia gas to the performance of algae growth and ammonia 

removal efficiency, different ranges of dilution rate, ammonia gas concentration in the inlet 

gas, and medium pH in the reactor were studied. As the maximum specific growth rate was 

determined as 0.32 day
-1

 (see “results and discussion” section), the range of dilution rate was 

from 0.05 to 0.3 day
-1

.  

 

The practical chicken house generates ammonia gas of 2-10 ppm in the summer and 10-100 

ppm in the winter depending on the types of operation. Also, the Threshold Limit Value 

(TLV) of ammonia gas is 25 ppm and OSHA permissible Exposure Limit (PEL) is 35 ppm 

[30]. So 17, 27, 42, 60, and 72 ppm of ammonia gas concentrations were employed to test the 

algal growth. The pH was diversified around neutral pH (pH 5, 6, 7, and 8) to minimize the 

use of acid or base. 

 

3.4. Analyses 

 

3.4.1. Cell growth 

 

The algal cell growth was determined by measuring optical density (OD) of the cell 

suspension at 750nm (OD750) and then converted into cell density (g/L). A spectrophotometer 

(DU 720, Beckman Coulter, Fullerton, CA) was used for measuring the OD750. A dilution 

factor 5 was used to ensure the OD value and cell dry weight concentration are in a linear 

range. After measuring the OD750, it was converted to the cell density (g/L) using a standard 

curve  D7 0 = 0.96 7 g/L   0.0 8  with R
 
 of 0.99 . The cell productivity (g/L·day) then 

was calculated by multiplying the cell density (g/L) with the dilution rate (day
-1

). 
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3.4.2. Ammonia concentration in the exhausted gas 

 

The ammonia gas outlet was measured by a gas analyzer (BW gas alert Micro5
TM

 

electrochemical detector, Honeywell). 

 

3.4.3. Ammonia concentration in the cell culture solution 

 

The algae biomass suspension harvested at the steady state was centrifuged at 3000 rpm for 5 

minutes. The algae pellet and the supernatant were separated. The biomass pellets was freeze 

dried and stored for further characterization.  

The supernatant was analyzed by nitrate (Nitrate TNTplus LR, HACH) and ammonia kits 

(TNT AmVer LR, HACH) using a spectrophotometer (Hach model DR 3900).  

 

3.4.4. Biomass characterization 

 

The algae biomass harvested at steady state of each operational condition was analyzed for 

the total nitrogen, protein, amino acid profile, total lipid, carbohydrate and ash content. 

Nitrogen content (%) was determined by Combustion Method (AOAC 990.03) using a Vario 

MAX Carbon Nitrogen analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). 

Protein was calculated as nitrogen (%) × 6.25. Ash was determined gravimetrically after 

heating at   0˚  for  6h. The amino acid profile was determined by Agricultural Experiment 

Station Chemical Laboratories, University of Missouri, based on AOAC Official method 

982.30 E (a, b, c) Ch. 45.3.05.  

 

3.5. Statistical analysis  

 

One-way analysis of variance (ANOVA) was used to test whether the cell growth condition 

significantly changes the cell density, cell productivity, and ammonia removal performance 

parameters. A statistical tool SAS (version 9.3, SAS Institute Inc., Cary, NC) was employed 
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with the p-value of 0.05 to determine the significant differences in results. The sample 

replicate was obtained by taking samples of certain growth condition for several days when 

the cell reached to the steady-state.  
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Chapter 4. Results and discussion 

 

4.1. Algae cell growth  

 

Microalgae can be found in a wide range of environment but each species has different 

environment preference and the growth rate can be maximized by finding the optimal growth 

condition. In this study, the cell growth at different conditions was first studied as an 

evaluation of algal ammonia removal capacity. Figure 4.1 shows the cell density of the entire 

continuous algal culture process performed in this project.  

 

 

Figure 4. 1 Cell density of S. dimorphus during the continuous culture. The culture 

conditions in terms of the dilution rate (D, unit day
-1

), ammonia concentration in the inlet gas 

and medium pH are indicated at different culture time points 

 

4.1.1. Cell growth at different dilution rates 

 

Dilution rate is an important factor for controlling the continuous culture performance. In 

general, the higher the dilution rate, the higher biomass productivity can be achieved. 

However, the highest dilution rate cannot exceed the maximal cell specific growth rate in 

order to avoid the cell-wash out. Therefore, in this project, we first performed a batch culture 
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with nitrogen as a limiting factor to determine the maximal cell specific growth rate, and thus, 

the highest dilution rate the continuous culture can be used. 

 

The maximum specific growth rate was tested in 50mL Erlenmeyer flasks to determine the 

dilution rate range. By changing the initial NH4-N concentrations (0, 0.1, 0.2, 0.4, 0.6, 0.8, 

and 1.2 mM), the algal growth curve was obtained. The growth curve of each condition was 

converted to the logX (cell density) – N (nitrogen concentration) graph then the slopes of 

each concentration was used for the Monod equation. The growth dynamics expressed as 

Monod equation was:  

 

  
     

    
                               ················  Equation 4.1. 

 

where µ is the specific cell growth rate (day
-1

), Ks is the half-saturation constant (mM), and N 

is nitrogen concentration (mM) (Figure 4.2). Therefore, the reactor was run at dilution rates 

of 0.05, 0.1, 0.2, and 0.3 day
-1

 to determine the optimal dilution rate. 

 

Based on the result in Figure 4.2, the maximal specific growth rate of the cells was 0.35 day
-1

, 

therefore, in the following continuous culture, the dilution rate was controlled at the range of 

0.05 - 0.3 day
-1

. Figure 4.3 shows dilution rate effect on both of the cell density and the cell 

productivity. The cell productivity was calculated as 

 

                                      ················  Equation 4.2. 

 

where D is the dilution rate (day
-1

). The dilution rate effect was observed under inlet 

ammonia concentration being 60 ppm and medium pH being 7.0. 
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Figure 4. 2 Effect of initial ammonia-nitrogen concentration on the specific growth rate of S. 

dimorphus 

  

As shown in the Figure 4.3, the cell density was highest at both of dilution rates of 0.05 day
-1

 

(2.98 ± 0.05 g/L) and 0.1 day
-1

 (2.92 ± 0.07 g/L) and decreased with dilution rate increasing 

from 0.1 day
-1

 to 0.3 day
-1

. The cell productivity also increased with the dilution rate 

decrease and was highest at a dilution rate of 0.1 (0.29 ± 0.007 g/L·day) but diminished 

significantly (0.15 ± 0.003 g/L·day) at 0.05 day
-1

. Both of the cell density and productivity at 

different dilution rates were statistically different (p < 0.0001). The decreasing trend of cell 

density with dilution rate might be explained by the progression of cell washout. At each 

steady state, algae cell density maintained at a constant level as the cell growth rate keeps a 

pace with the dilution by a fresh medium. At higher dilution rate, however, more frequent 

exchange of fresh medium will make cells getting hard to keep their numbers in a unit 

volume.  

 

The low cell productivity at 0.05 day
-1

 might be explained by the fact that the amount of 

nutrients remained in the reactor is not sufficient to support algal growth at low dilution rate. 

That is, other nutrients than nitrogen become a limiting factor for the algal growth so the cell 

production per unit time becomes slow down. Therefore, dilution rate of 0.1 day
-1

 is the 
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optimal condition for algae biomass production and this dilution rate was used for the 

following study on ammonia concentration and medium pH effects. 

 

The different cell density throughout the varied dilution rates shown for S. dimorphus also 

observed for the same genus, S. quadricauda. In unialgal culture experiment of Takeya et al. 

(2004), Microcystis novacekii showed consistent cell number under different dilution rates 

while Scenedesmus quadricauda reach to different cell numbers throughout the changing of 

dilution rates [27]. 

 

 

Figure 4. 3 Cell density and productivity of S. dimorphus under different dilution rates 

 

4.1.2. Effects of ammonia concentration in the inlet gas on cell growth 

 

Figure 4.4 presents the effect of ammonia concentration in the inlet gas on the S. dimorphus 

cell density and the cell productivity in continuous operation, with dilution rate and pH being 

controlled at 0.1 day
-1

 and pH 7, respectively. While all the terms in the ANOVAs were 

significant for all variables (p < 0.0001), the cell density and productivity increased with 

ammonia gas concentration increasing from 17 to 27 ppm and leveled off when ammonia gas 
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concentration increased from 27 to 72 ppm. The cell density and the cell productivity showed 

the same trend because the dilution rate was controlled to the same level. The highest cell 

density (2.92 ± 0.07 g/L) and productivity (0.29 ± 0.007 g/L·day) were achieved at 60 ppm 

of ammonia concentration; while 17 ppm of ammonia concentration resulted in the lowest 

cell density (1.46 ± 0.03 g/L) and productivity (0.15 ± 0.003 g/L·day). The lowest cell 

density and cell productivity at 17 ppm means the reactor was a nutrient-limiting 

environment. 

 

 

Figure 4. 4 Effects of ammonia concentration in the inlet gas on the cell density and 

productivity 

 

To date, the effect of ammonia gas concentration on algal growth have not been well studied, 

but the utilization of ammonia from liquid phase by microalgae have been widely studied. 

The similar cell density and cell productivity obtained from 27 to 72 ppm ammonia gas is 

similar to the result of Tam and Wong (1996). In their batch scale study under neutral pH, 

Chlorella vulgaris showed similar cell number (45.4 ± 6.7 × 10
6
 cells/mL) at the stationary 

phase for a wide range of ammonium concentration (20 mg/L to 250 mg/L) [31]. Similar 

explanation can be found in the Chlamydomonas sp. According to Chlamydomonas 

sourcebook, this algae can avoid any toxic effect of excessive intracellular amounts of 
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ammonium because it does not accumulate ammonium within intracellular compartments and 

cells excrete ammonium when their assimilation capacity is exceeded [32]. This inference 

will be justified by the consistent cell nitrogen absorption percentages covered in the section 

4.3.2. However, in the study of Tam and Wong (1996), the cell number diminished when 

ammonium concentration reached to 1000 mg/L (29.18 × 10
6
 cells/mL), indicating ammonia 

will result in an inhibition when its concentration exceeds a certain threshold level. 

 

The upper limit of ammonia gas concentration and the pH effect should be carefully 

monitored because the un-ionized ammonia at higher concentrations is known to inhibit the 

cell growth of a wide range of algae species [22]. The upper level of non-inhibitory ammonia 

concentration has been intensively studied. Abeliovich and Azov (1976) observed growth 

inhibition of Scenedesmus obliquus above 2.0 mM (28ppm) of NH3 concentration at pH 

values over 8.0 [22]. Park et al. (2010) observed S. accuminatus growth at 100, 200, 400, 

500, 800, 1000 ppm of NH4-N at pH 8.4 and concluded that the algae cell density was 

highest at  00ppm, but didn’t consider below  00ppm [24]. 

 

It is also notable that from 72ppm, the pH drifted up so the pH had to be adjusted repeatedly 

(Figure 4.5). This result is different from the report by Tam and Wong (1996), in which the 

pH of the culture solution decreased below to 4 when C. vulgaris was provided with ionized 

ammonium more than 50 ppm [31]. This dissimilarity can be explained by Equations 4.3, 4.4 

and 4.5. 

 

   
                                                 

                                                

                    
                                              

 

Equation 4.3 is account for the diminished pH of Tam and Wong (1996). The excess amount 

of ammonium (NH4
+
) that is not assimilated by algae will dissociate into NH3 (l) and H

+
 ion 

depending on the equilibrium constant, resulting in the pH decrease. On the other hand, the 

raised pH of this experiment can be explained by Equations 4.4 and 4.5. According to the 
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Equation 4.4, the ammonia gas (NH3) fed into the medium will first make equilibrium with 

NH3 (l) and will be consumed by algae. When ammonia is added above the amount that algae 

can assimilate, the ammonia residues will go through Equation 4.5, which generates 

hydroxide ion (OH
-
), making the higher medium pH.  

 

As shown in section 4.1.3., the algae cell growth is retarded at above neutral pH. Therefore, 

ammonia concentration in the inlet gas of 72 ppm is not favorable to algal-ammonia scrubber 

system because of using acid for pH controlling, rather than the ammonia growth inhibitory 

effect. 

 

 

Figure 4. 5 Medium pH level in continuous algal culture when sparging ammonia-laden air 

at different ammonia concentrations 

 

4.1.3. Effect of medium pH on algal growth 

 

Medium pH is an important parameter to affect algal growth because it determines both of 

ammonia gas dissolution and algal metabolic activities. The effect of pH was examined under 

dilution rate of 0.1 day
-1

 with ammonia concentration of 60 ppm. The cell density and 

productivity from different pHs were statistically different (p < 0.0001). As shown in Figure 
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4.6, the highest cell productivity was shown at pH 7 (0.29 ± 0.007 g/L·day), following pH 5 

(0.24 ± 0.004 g/L·day), 6 (0.24 ± 0.007 g/L·day), and lowest at 8 (0.19 ± 0.003 g/L·day). The 

cell productivity at pH 5 and 6 were similar but significantly low at pH 8. This result of pH 

effects may be explained by Azov and Goldman (1982) that the ammonia inhibition is related 

to the dissociation of NH4
+
 as a function of pH, because the ionized ammonia cannot 

penetrate freely through the algal cell membrane. The penetrated ammonia will elevate the 

cell’s internal pH to an inhibitory level [22, 23]. Figure 4.6 also implies that S. dimorphus 

grows best at the neutral pH and overdose of acid will not be helpful for improving the cell 

growth performance although the ammonia adsorption at the lower pH will increase. 

 

 

Figure 4. 6 Effects of medium pH on cell density and productivity 

 

4.2. Ammonia gas removal performance 

 

The ammonia gas removal performance was evaluated through criteria of i) volumetric 

ammonia removal capacity, ii) cellular ammonia consumption rate, iii) cell yield, iv) 

ammonia gas removal percentage (%), and v) N conversion efficiency. The concept and 

calculation procedures for those four parameters are shown as follows: 
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i) Volumetric ammonia removal capacity (ΔNH3/L (g/L·day)) 

The volumetric ammonia removal capacity implies how much ammonia gas can be removed 

per unit algae suspension volume in a day and can be applied to the design of a reactor. It 

was calculated by the following equation. 

                    

                        
                                 

ii) Cellular ammonia consumption rate (ΔNH3/Δx·L                   ) 

The cellular ammonia gas consumption rate indicates the individual algae cell capacity to 

consume ammonia gas in a day. It was calculated by the following equation. 

 
                                             

                  
                                 

iii) Cell yield (Δx / ΔNH3               ) 

The cell yield was determined by following equation, implying how many cell biomasses can 

be produced by unit ammonia gas. i.e., 

 
                           

                                             
                                 

Contrary to the cellular ammonia consumption rate, the cell yield used cell productivity 

instead of cell density because the cellular ammonia consumption rate focuses on the ability 

of individual cells while the cell yield focuses on the amount of the entire cell production. 

iv) Ammonia gas removal rate (%) 

The ammonia gas mitigation efficiency of the algal-ammonia scrubber can be measured as 

follows. 

 
                  ⁄  

           ⁄  
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4.2.1. Effect of dilution rate 

 

4.2.1.1. Volumetric ammonia removal capacity (ΔNH3/L (g/L·day)) 

 

As shown in Figure 4.7, the volumetric ammonia removal capacity was not affected (0.04 ± 

0.002 g/L·day) by dilution rate change because the ammonia gas inlet and the reactor volume 

were constant while the ammonia gas outlet difference between different dilution rates was 

negligible (d = 0.002). This implies that the algal capacity of consuming ammonia gas per 

unit volume is not influenced by the frequency of fresh medium exchange. However, the 

volumetric ammonia removal capacity difference between dilution rates was statistically 

significant (p < 0.0001) because of too narrow variance in each dilution rate. 

 

 

Figure 4. 7 Dilution rate effect on the volumetric ammonia removal capacity 

 

4.2.1.2. Cellular ammonia consumption rate (ΔNH3/Δx·L (g NH3/g cell·day)) 

 

Figure 4.8 shows that the cellular ammonia consumption significantly changed with the 

dilution rate shift from 0.1 day
-1

 to 0.3 day
-1

. Because the cellular ammonia consumption rate 

is derived from volumetric ammonia removal capacity divided by cell density and the 
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volumetric ammonia removal capacity was unchanging throughout the dilution rates, the 

cellular ammonia consumption rate is directly proportional to the inverse of the cell density. 

It is also notable that significantly high cellular ammonia consumption rate throughout the 

whole growth condition was shown at dilution rate 0.3 day
-1

 (0.06 ± 0.01 g NH3/g cell·day) 

and 0.2 day
-1

 (0.03 ± 0.00 g NH3/g cell·day), at which the lowest cell densities appeared. 

Similar result can be found in Tam and Wong (1996), in which Chlorella vulgaris was used 

to remove a wide range of ammonium concentrations (0-1000 mg/L) at neutral pH. In their 

study, the highest ammonium uptake rate was recorded in the medium containing 1000 mg-

N/L, at which the cell number started to diminish [31]. 

 

 

Figure 4. 8 Dilution rate effect on the cellular ammonia consumption rate 

 

4.2.1.3. Cell yield  Δx / ΔNH3 (g cell/g NH3)) 

 

As shown in Figures 4.9, 4.13, and 4.17, 0.1 day
-1

 produced the highest cell yield among the 

four dilution rates (7.80 ± 0.24 g cell/g NH3) and 0.05 day
-1

 (3.69 ± 0.06 g cell/g NH3) 

showed the lowest cell yield throughout the whole experiment. The cell yield was greatly 

affected by the cell productivity because of the constant volumetric ammonia removal 

capacity throughout the dilution rate experiments.  
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Figure 4. 9 Dilution rate effect on the cell yield 

 

4.2.1.4. Ammonia gas removal ratio (%) 

 

As shown in Figure 4.10, the ammonia gas removal rate was always high above 93% up to 

96 % throughout all the dilution rates, therefore was not quite affected by the dilution rate. 

However, the ammonia gas removal ratio difference between dilution rates was statistically 

significant (p < 0.0001) because of too narrow variance in each dilution rate. 
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Figure 4. 10 Dilution rate effect on the ammonia gas removal rate 

4.2.2. Effect of ammonia concentration 

 

4.2.2.1. Volumetric ammonia removal capacity (ΔNH3/L (g/L·day)) 

 

As shown in Figure 4.11, the ammonia removal per unit volume improved with the increase 

of the ammonia gas concentration (correlation coefficient, R= 0.99). It was improved about 

6.6 times from 17 ppm to 72 ppm (0.0077 g/L·day at 17 ppm; 0.051 g/L·day at 72 ppm). This 

trend is caused by the stable ammonia gas outlet concentration and constant algae biomass 

volume throughout the inlet ammonia concentration experiment.  

 

The ascending ammonia removal capacity with increasing inlet concentration is also found in 

the biofilter. H. Jorio et al. (2000) showed that under constant gas flow rate, the elimination 

capacity increases as the inlet concentration is increased until the optimal inlet concentration 

reached. [33]. N.J. Kim et al. (2000) also showed linear relationship between ammonia load 

of 42-290 ppmv and removal capacity in the biofilter [20].  
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The actual volumetric ammonia removal capacity value is also comparable to the biofilter. Y. 

Liang et al. (2000) calculated volumetric ammonia removal capacity of the biofilter under 

ammonia concentrations of 20-500 ppmv: 0.0195-0.0203 g/L·day at 20 ppmv and 0.0758-

0.0764 g/L·day at 100 ppmv [34]. 

 

 

Figure 4. 11 Effect of ammonia concentration on the volumetric ammonia removal capacity 

 

4.2.2.2. Cellular ammonia consumption rate (ΔNH3/Δx·L (g NH3/g cell·day)) 

 

As shown in Figure 4.12, the cellular ammonia consumption rate was substantially affected 

by the ammonia concentration in the inlet gas (correlation coefficient, R = 0.97). This is 

because of the dependency of volumetric ammonia removal capacity on the ammonia 

concentration in the inlet gas and relatively stable cell density throughout the ammonia 

concentration change. The proportional increase of the cellular ammonia consumption rate 

along with the increasing ammonia concentration of present study is in consistent with the 

ammonium concentration effect reported by Tam and Wong (1996). They stated that the 

specific ammonium uptake (mg N uptake per cells) increased with initial ammonium 

concentrations [31].  
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The increasing cellular ammonia consumption rate with the increasing ammonia 

concentration in the inlet gas implies that the algae cell can utilize nitrogen as much as 

possible and 72 ppm of the ammonia gas concentration in the inlet gas is not a growth 

inhibitory level.  

 

 

Figure 4. 12 Effect of ammonia concentration on the cellular ammonia consumption rate 

 

4.2.2.3. Cell yield  Δx / ΔNH3 (g cell/g NH3))  

 

The cell yield also correlated with the ammonia concentration in the inlet gas (correlation 

coefficient R= - 0.97). It is notable that the highest cell yield throughout the whole 

experiment was obtained at 17 ppm of ammonia concentration (19.4 ± 2.52 g cell/g NH3), 

because the cell productivity was not that low relative to the volumetric ammonia removal 

capacity than other cases. 
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Figure 4. 13 Effect of ammonia concentration on the cell yield 

 

4.2.2.4. Ammonia gas removal ratio (%) 

 

The ammonia gas removal ratio was constantly high above 90% for all conditions except 17 

ppm (84.5 %). The volumetric ammonia removal capacity difference between dilution rates 

was statistically significant (p < 0.0001) because of too narrow variance in each dilution rate. 

Similar result can be found in other literatures. L. E. Gonzalez et al. (1997) used 

Scenedesmus dimorphus to treat 36.3 mg/L of ammonium in an aerated bioreactor with 2-L 

working volume and obtained 95% of ammonium removal efficiency [25]. Tam and Wong 

(1996) also removed more than 95% of ammonium using Chlorella vulgaris in flasks for 

initial ammonium concentrations of 40-80 mg/L. In contrast to present study, however, 100% 

of ammonium was absorbed by algae for 10-20 mg/L initial ammonium [31]. 

 

The different ammonia or ammonium removal percentages at low ammonia or ammonium 

concentration might arise from the different experimental design: present study exchanged 

the medium continuously and the reactor had a ventilation hole whereas Tam and Wong 

(1996) inoculated algae in closed flasks that contain different initial ammonium 

concentrations. Therefore, the unabsorbed ammonia gas could escape from the reactor while 
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the unabsorbed ammonium stays in the medium and the algae eventually utilize as much of it 

as possible for their growth. The high percentage of ammonia outlet in the nitrogen mass 

balance confirms this inference (section 4.3.2.). 

 

The ammonia gas removal ratio of other end-of-pipe ammonia mitigation methods, such as 

acid scrubber and biofilter, shows similar result. The ammonia removal performance of those 

systems is generally high up to 100 % depending on the inlet concentration, packing material, 

and operating conditions [35]. J. R. Kastner (2004) tested biofilter with low ammonia 

concentration (0-25 ppmv) and the ammonia removal efficiency obtained was 70-100 % for 

ammonia inlet concentration of 8-25 ppmv and 30-80 % for 0-6 ppmv [36]. The lower 

ammonia removal efficiency at low ammonia inlet concentration concurs with our result. 

 

 

Figure 4. 14 Effect of ammonia concentration on the ammonia gas removal rate 

 

4.2.3. Effect of medium pH 

 

4.2.3.1. Volumetric ammonia removal capacity (ΔNH3/L (g/L·day)) 
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Although the pH determines the dissolution of ammonia gas into the liquid medium and the 

differences were statistically significant (p < 0.0001) because of the too narrow variance in 

each dilution rate, the volumetric ammonia removal capacity turned out to be not affected 

(0.04 ± 0.002 g/L·day) by pH change. This is primarily because the ammonia gas inlet and 

the reactor volume were controlled to the same level. The ammonia outlet at pH 8 was higher 

than other cases but the absolute amount of difference became negligible when it was divided 

by the reactor volume (5L). 

 

 

Figure 4. 15 Effect of medium pH on the volumetric ammonia gas removal capacity 

 

4.2.3.2. Cellular ammonia consumption rate (ΔNH3/Δx·L (g NH3/g cell·day)) 

 

The cellular ammonia consumption rate did not show significant correlation with the pH 

change. The lowest value was observed at pH 7 because the cell density was highest at this 

condition under the stable volumetric ammonia removal capacities. 
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Figure 4. 16 Effect of medium pH on the cellular ammonia consumption rate 

 

4.2.3.3. Cell yield  Δx / ΔNH3 (g cell/g NH3)) 

 

The cell yield showed similar trend with the cell productivity because of the constant 

volumetric ammonia removal capacities throughout all pH cases. Therefore, the highest cell 

yield was observed at the optimal condition (pH 7, 7.80 ± 0.24 g cell/g NH3).  
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Figure 4. 17 Effect of medium pH on the cell yield 

 

4.2.3.4. Ammonia gas removal ratio (%) 

 

The ammonia gas removal ratio was constantly high above 93 % for all conditions except 

when the medium was basic (pH 8, 83.0 %). The low ammonia removal efficiency at pH 8 is 

because of the higher ammonia outlet ventilation than other cases. 
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Figure 4. 18 Effect of medium pH on the ammonia gas removal rate 

 

4.3. The fate of ammonia in inlet gas - nitrogen mass balance  

 

In order to chase the nitrogen fate, nitrogen mass balance was calculated for each condition. 

The nitrogen mass balance equation used was (g/day):  

 

Ninput = Ncell absorption + Nliquid dissolve + Noutlet   ε ······································· Equation 4.10 

 

Each term was calculated by those equations. 

 

Ninput (g/day)=NH3input (L/min)×NH3 density (g/L)×60×24 (min/day)×14/17···· Equation 4.11 

Ncell absorption (g/day) = cell density (g/L) × V(L) × D (day
-1

) × N content (%)···· Equation 4.12 

Nliquid dissolve (g/day) = (nitrate (g/L) + ammonia (g/L)) × V (L) × D (day
-1

) ····· Equation 4.13 

Noutlet (g/day) = Airinput (L/min) × ammonia concentration (10
-6

) × 14/17 ······· Equation 4.14 

 

where V is reactor volume and D is dilution rate. 
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4.3.1. Effect of dilution rate  

 

Table 4.1 shows the nitrogen mass balance at different dilution rates. The highest cell 

absorption occurs at the optimal growth condition (D = 0.1 day
-1

), following in order of 0.2, 

0.3, and 0.05 day
-1

. This tendency of cell N absorption can be understood in a similar way to 

the cell productivity covered in section 4.1.1.  

 

Table 4. 1 Nitrogen mass balance at dilution rate 

(%) D 0.05 D 0.1 D 0.2 D 0.3 

Input 100 100 100 100 

Cell absorption 52.7 98.6 77.8 65.3 

Liquid 37.7 0.064 10.0 20.7 

Outlet 7.72 5.95 5.67 5.39 

error 1.95 -4.66 6.53 8.54 

 

The effects of dilution rate and pH were tested after ammonia concentration test (controlled 

at pH 7 and 0.1 day
-1

) in order of pH 6, 5, and 8 (controlled at 60 ppm and 0.1 day
-1

), and 

dilution rate of 0.2, 0.05, and 0.3 day
-1

(controlled at 60 ppm and pH 7). After testing 

ammonia concentration of 72 ppm, which led to an over-nutrient medium state, there always 

remained significant amount of ammonia in the medium liquid. From this observation, it can 

be concluded that the high ammonia concentration has a long term effect on the liquid N 

absorption.  

 

The liquid N absorption increased as the cell N absorption decreased: when the cell 

absorption was poor, the liquid became highly over-nutrient state, which can be a good 

habitat for other organisms. For this reason, adjusting dilution rate to the optimal condition is 

important not only because of high cell productivity, but also because of contamination 

prevention. 
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The ammonia outlet was consistent through all dilution rate cases. Thus, the ammonia gas 

ventilation is not affected by the frequency of medium exchange.  

 

4.3.2. Effect of ammonia gas concentration  

 

Table 4.2 summarizes the nitrogen mass balance at different ammonia gas concentrations. At 

the optimal growth condition (60 ppm), the portion of cell absorption is highest and the 

ammonia outlet that was not trapped by anywhere is lowest. Therefore, controlling the algae 

growth condition to the optimal condition is important for greater algal nitrogen assimilation 

and algal protein production. 

 

Although the cell density and productivity of 17 ppm was prominently low, the cell N 

absorption portion was similar to the 72 ppm and lower than other cases (27, 42, and 60 ppm). 

The similar cell N absorption of 17 ppm and 72 ppm contrasts with the result of cellular 

ammonia consumption rate in section 4.2.2., which showed the highest cellular ammonia 

consumption rate at 72 ppm. This contrast is because the cellular ammonia consumption rate 

does not reflect the cellular ability to consume the ammonia gas; rather, it focuses on the 

ammonia removal amount. In other words, if the cell could maintain their cell density and 

productivity nevertheless of the depreciation of the cellular ammonia consumption ability at 

72 ppm, the cellular ammonia consumption rate could be increased with the increased 

ammonia concentration. The cell density and productivity maintenance at 72 ppm implies 

that the algae adapt to their environment by changing their biochemical composition in the 

cell. This also implies that the nitrogen mass balance is more accurate parameter to know the 

cellular ammonia uptake ability.  

 

It is also interesting to compare the liquid and outlet of 17 ppm and 72 ppm; the outlet 

portion is significantly high at 17 ppm, while most of the unabsorbed ammonia gas goes to 

the liquid portion rather than the outlet portion at 72 ppm. This is primarily because of the 

constantly low ammonia gas ventilation amount throughout the all ammonia concentrations 

and also because the medium capacity is enough to capture the ammonia gas so the liquid 
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ammonia-ammonium equilibrium (Equation 4.5) occurs quickly. The medium liquid capacity 

of ammonia capture was ignorable (below 0.2 %) up to 60 ppm, but was escalated to 20.3 % 

at 72 ppm, resulting in an over-nutrient state.  

 

Although the nitrogen mass balance was carefully and meticulously calculated, the error term 

for the low ammonia conditions were prominent. Ammonia that could not be accounted for 

might be attributed to: (a) experimental measurement error; (b) possible ammonia gas leaking 

from the reactor; and (c) nitrogen assimilation by other microorganisms such as rotifer or 

bacteria. 

 

Table 4. 2 Nitrogen mass balance at different ammonia gas concentration in inlet gas 

(%) 17 ppm 27 ppm 42 ppm 60 ppm 72 ppm 

Input 100 100 100 100 100 

Cell absorption 77.4 90.9 82.5 98.6 72.7 

Liquid 0.172 0.0941 0.0564 0.0637 20.3 

Outlet 20.4 8.06 10.9 5.95 5.43 

error 2.05 0.926 6.55 -4.66 1.56 

 

 

4.3.3. Effect of medium pH  

 

Table 4.3 represents the pH effect on the nitrogen distribution. Besides the optimal pH, the 

cell N absorption was markedly low and the liquid N absorption was high. The low cellular 

N absorption at pH 5, 6, and 8 reflects the retarded cellular N absorption ability and also 

implies that the cellular metabolism of the algae is optimum at the neutral pH. The high 

liquid N absorption at pH 5 and 6 reflects the most of ammonia exists as ammonium 

following the equilibrium of Equation 4.5. 

 

The unutilized ammonia by cell was mostly evacuated at pH 8. This also can be explained by 

the pH effect on the ammonia-ammonium equilibrium. As shown in Figure 2.4 in Chapter 2, 
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the majority of ammonia exists as ammonium below pH 7; ammonia is getting increase while 

ammonium is getting decrease after pH 7; and ammonia and ammonium are the same amount 

at pH 9.4. Likewise, the ammonia outlet was indistinct under pH 7 whereas became 

significant at pH 8 in present study. 

 

Table 4. 3 Nitrogen mass balance at different medium pH 

(%) pH 5 pH 6 pH 7 pH 8 

Input 100 100 100 100 

Cell absorption 64.4 68.1 98.6 55.6 

Liquid 31.6 36.1 0.0637 16.6 

Outlet 6.52 6.52 5.95 26.4 

error -2.55 -10.8 -4.66 1.43 

 

The data in tables 4.1, 4.2, and 4.3 show that the majority of nitrogen was absorbed by the 

cell. This phenomenon concurs with nitrogen mass balance study conducted by O. R. Zimmo 

et al. (2004) using ammonium in algae pond at different seasonal periods, concluded that the 

largest nitrogen flux was algae biomass sedimentation [37]. This implies that, in order to 

mitigate more ammonia gas the higher algae cell growth is important.  

 

It is also noticeable that the trend of cell absorption is in consistent with the tendency of cell 

productivity (g/L·day) rather than the cell density (g/L) in all cases. This means that the cell 

absorption capacity depends on the duration time that the algae exposed to the ammonia. 

 

4.4. Algae biomass characterization: amino acid composition 

 

The protein is composed of different amino acids hence the high quality of dietary protein 

can be assured by the balance of amino acids between the absorbed one and the required one 

by animal. Because the surplus nitrogen of essential amino acids (EAAs) remains in the body 

and can be used in the synthesis of non-EAAs, an ideal protein is the one that provides the 
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exact balance of amino acids needed for optimum performance and maximum growth [38]. 

Feeding the ideal protein is beneficial for abating ammonia gas because it minimizes nitrogen 

excretion from animal. 

 

The actual amino acid constitution of present study was compared with S. obliquus from 

published data in table 4.4. The growth condition of Becker (1984) was urea 60 ppm and 

NH4
+
 20 ppm, controlled pH to the unknown level in open pond [39]; Osman (2004) was 

KNO3 140 ppm, pH 6, periodic dilution [40].  

 

The essential amino acids (EAAs) arginine, histidine, isoleucine, leucine, lysine, 

phenylalanine, threonine, tryptophan, methionine, and valine and non-EAA tyrosine, 

cysteine, aspartic acid, glutamic acid, serine, proline, glycine and alanine were present in 

relatively high levels. Wang and Fuller (1989) studied the optimum protein composition for 

pig feed and concluded that the minimum EAA:non-EAA should be at least 45:55 in order to 

balance the surplus of nitrogen of EAA to be used as a nitrogen source of non-EAA [41]. 

Since our study showed 49:51 ratio, S. dimorphus grown with ammonia gas has potential to 

be used as an animal feed. 
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Table 4. 4 Amino acids composition of Scenedesmus spp. 

AA content  

(mg/100mg of dry weight) 

S. dimorphus  

(present study) 

S. obliquus 

(Becker, 1984) 

S. obliquus 

(Osman, 2004)  

Glutamic Acid 4.19 ± 0.09 5.55 6.01 

Aspartic Acid 3.61 ± 0.08 4.36 6.99 

Leucine 3.58 ± 0.08 3.79 5.44 

Alanine 3.41 ± 0.08 4.67 5.14 

Arginine 3.08 ± 0.10 3.68 3.85 

Glycine 2.85 ± 0.15 3.68 2.92 

Lysine 2.38 ± 0.06 2.91 4.24 

Phenylalanine 2.20 ± 0.03 2.49 3.12 

Threonine 2.08 ± 0.07 2.65 2.95 

Valine 2.17 ± 0.07 3.11 3.91 

Proline 2.08 ± 0.03 2.02 3.28 

Serine 1.51 ± 0.08 1.97 2.72 

Isoleucine 1.55 ± 0.05 1.87 4.97 

Tyrosine 1.45 ± 0.03 1.66 2.07 

Methionine 0.88 ± 0.03 0.78 1.2 

Histidine 0.72 ± 0.02 1.09 1.86 

Cysteine 0.53 ± 0.02 0.31 0.08 

Taurine 0.03 ± 0.00   

Hydroxylysine 0.09 ± 0.03   

Tryptophan 0.08 ± 0.03 0.16  

Hydroxyproline 0.08 ± 0.02   

Ornithine 0.04 ± 0.01   

Lanthionine 0.00 ± 0.00   

Total AA 38.60 46.74 60.75 

Essential AA (EAA) 18.72 22.51 31.54 

Non-EAA 19.87 24.23 29.21 

EAA/non-EAA 0.94 0.93 1.08 

EAA/total AA 0.49 0.48 0.52 

 

The ideal protein recommendation for each animal has not yet been determined and several 

different proposals are used. Amino acid profile is usually expressed relative to lysine 

because lysine is the first limiting amino acid in corn, which is the cheapest and most 

common animal feeds, and it is not used for the synthesis of other nitrogen-compounds [42]. 

The relatively expressed amino acids of S. dimorphus in present study grown at the optimal 

condition (NH3 60ppm, pH 7, 0.1day
-1

) is compared with published ideal protein 

recommendations in table 4.5.  
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Compared to the ideal proteins shown in table 4.5, S. dimorphus has relatively balanced 

amount of methionine, isoleucine, histidine with lysine. However, it contains relatively high 

amount of threonine, leucine, valine, and arginine and relatively low amount of cysteine and 

tryptophan. Because this imbalance might impair the quality as an animal feed, further study 

to find optimal growth condition to produce more idealistic amino acid profile is needed.  

 

Becker (2006) tested nutritional quality of S. obliquus and it was comparable to eggs and 

soybeans [21]. Likewise, nutritional and toxicological evaluations focused on S. dimorphus 

grown with ammonia gas are needed to be fully commercialized as an animal feed.  
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Table 4. 5 Comparison with ideal protein recommendations 

AA profile S.dimorphus ideal protein for broilers [43] 

Ideal protein for dairy 

cows [44] ideal protein for growing pigs [42] 

[45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [41] [58] [59] [50] [60] 

Lysine 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Methionine 37 36 38 38 45 37 44 37 31 35 34   

       Met+Cys 59 72 73 70 82 74 79   

   

50 60 55 63 59 60 60 50 

Threonine 88 67 65 60 73 65 65 47 75 71 55 60 60 64 72 75 65 64 66 

Tryptophan 4 16 16 16 18 16 19 15 

   

15 18 16 18 19 18 19 18 

Isoleucine 65 67 66 55 73 67 78 61 71 74 61 55 60 61 60 61 60 54 50 

Leucine 151 109 

 

102 109 

 

150 110 123 131 122 100 72 80 110 110 100 100 100 

Valine 91 77 80 61 82 75 84 73 81 85 73 70 

 

64 75 75 68 70 70 

Histidine 30 32 

  

32 

 

35 36 33 33 42 33 26 29 

 

32 32 36 33 

Phenylalanine 93 

      

62 76 72 63   

       Phe+Tyr 153 

      

  

   

96 100 88 120 122 95 95 100 

Arginine 130 105 105 110 114 103 117 43 63 67 43   

 

42 

  

42 31 
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Chapter 5. Conclusion 

 

A robust microalgae, Scenedesmus dimorphus was used as a model strain to mitigate 

ammonia gas from animal house. Dilution rate (0.05, 0.1, 0.2, and 0.3 day
-1

), ammonia gas 

concentration in the inlet gas (17, 27, 42, 60, and 72 ppm), and medium pH (5, 6, 7, and 8) 

were tested to find an optimal condition for the algae growth. The algae growth was 

compared using cell density and cell productivity and turned out that the optimal growth 

condition is dilution rate 0.1 day
-1

, ammonia gas concentration in the inlet gas 60 ppm, and 

medium pH 7. 

 

The ammonia gas removal performance was compared using volumetric ammonia removal 

capacity, cellular ammonia consumption rate, cell yield, and ammonia gas removal rate. The 

dilution rate effect was significant in the cell yield: substantially high cell yield was obtained 

at 0.2 and 0.3 day
-1

. The ammonia concentration in the inlet gas affected the volumetric 

ammonia removal capacity and the ammonia gas removal rate. As the concentration increase, 

the volumetric ammonia removal capacity was increased and the ammonia gas removal rate 

was lower than 90% at 17ppm. The medium pH became meaningful when comparing the 

ammonia gas removal rate: when the medium become basic, the ammonia gas removal rate 

was below 90%. 

 

The nitrogen mass balance was also calculated for all growth conditions. Throughout all 

cases, the majority of ammonia gas was absorbed by the algae cell. The liquid absorption was 

affected by the dilution rate the medium pH. Also, the liquid phase ammonia residue seems 

to have a long-term effect although the cell suspension was continuously exchanged with the 

fresh medium. The ammonia outlet ventilation was affected by the medium pH: it became 

significant when the medium was basic (pH 8). 

 

The algae biomass was characterized in terms of amino acid profile. It turns out that the 

essential amino acid ratio to the non-essential amino acid is high enough to be used as an 
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animal feed. Therefore, the algae biomass produced with the ammonia gas has a potential as 

an animal feed. This potential can be realized with further research on its nutritional and 

toxicological evaluations. 

 

Overall, the concept of producing algae using waste ammonia gas brought a promising result 

in present study. However, this idea has some limits before full implementation. First, 

because the algal- ammonia scrubber system is a kind of ‘end-of-pipe’ method, only modern 

animal houses that are equipped with ventilation pipe can utilize this system. This is not a big 

obstacle in that most of commercial animal houses are built with ventilation ducts. 

 

Second, the algae growth condition can be diversified to be close to a real animal house 

situation. For example, the limiting nutrient can be extended to other gases such as CO2 and 

CH4 that are high in animal house outlet gases to see any possible interactive effect between 

different gases on algae. Also, the light intensity or light-dark period can be interesting 

parameters. 

 

Finally, scale-up to a pilot scale can give a more realistic result. While the lab scale 

experiment suggests the possibility, the pilot scale will elucidate more practical problems and 

its feasibility will be determined.  
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